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Abstract
It is shown that superdense coding (SDC) experiments by means of nuclear
magnetic resonance (NMR) can show non-classical efficiency gain over
classical communication only for nuclear spin polarization beyond a certain
threshold, and this threshold coincides with that for non-separability of the
density matrix. It is also claimed that transfer of two-bit information mediated
by a single qubit in the previous NMR SDC experiments with low nuclear spin
polarization is not ascribed to the non-classical effect induced by entanglement,
but merely to a statistical effect in an ensemble system having a large number
of molecules. Towards experimental detection of entanglement, a new class
of entanglement witnesses is proposed, which is based on the measurement of
nuclear spin magnetizations in the Bell basis and is suitable for actual NMR
experiments.

PACS numbers: 03.65.Ud, 03.67.Hk, 87.64.Hd

1. Introduction

Nuclear magnetic resonance (NMR), which is widely used to investigate the structure
and dynamics of chemical/biochemical materials [1], has been incorporated into quantum
information science for a decade. Among several candidates for physical realization of
quantum information processing, NMR is an outstanding approach, with which one can
implement relatively complicated quantum algorithms [2]. However, there is confusion
in NMR quantum information processing with regard to the role of entanglement in its
implementation of non-local algorithms such as superdense coding (SDC) [3] and quantum
teleportation [4].
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Entanglement is believed to play an essential role in quantum information processing and
particularly in the non-local quantum algorithms [5, 6], where remarkable non-classical effects
arise such as transfer of two classical bits of information via a single qubit for SDC [3, 7] and
transfer of a quantum state from one place to another for quantum teleportation [4]. This may
imply that experimental demonstrations of these non-local algorithms by means of NMR [3, 4]
had accompanied entanglement in the system of nuclear spins. On the other hand, however,
there has also been a mathematical proof against the existence of entanglement in those NMR
experiments and most NMR experiments performed with low nuclear spin polarization [8, 9].
It has been shown that a density matrix representing the nuclear spin state is separable into a
direct product of submatrices (i.e., not entangled), unless the initial nuclear spin polarization
exceeds a certain threshold. Since this threshold is far beyond the nuclear polarization in those
NMR experiments, the nuclear spin systems in question cannot, according to the mathematical
argument, possess entanglement.

In this work, we deal with this apparent controversy between the NMR experiments and
the mathematical argument, taking SDC as an example of the non-local algorithms. We
show that there is not any non-classical efficiency gain in the previous report on NMR SDC
experiments, so that the seemingly successful implementation of NMR SDC is not due to the
existence of entanglement, but is merely ascribed to a statistical effect specific to ensemble
quantum computing. We also show that the efficiency gain due to the non-local quantum
effect only arises for the initial nuclear spin polarization exceeding a certain threshold, and
this threshold satisfactorily coincides with that for non-separability of the density matrix.

Once the apparent paradox has been resolved, we propose a scheme to experimentally
detect entanglement, extending the concept of entanglement witness [10, 11]. We introduce a
new class of entanglement witnesses based on the measurement of nuclear spin magnetizations
in the Bell basis. This approach provides a simple and convenient way of evaluating
the existence of entanglement in a single run experiment, and is applicable to all possible
states encountered in SDC. Although the entanglement witness derived from the conventional
approach is also shown to be measurable in a single run experiment, it requires pre-application
of somewhat complicated unitary transformation which moreover depends on the quantum
state of interest.

2. NMR SDC for a pure initial state

Let us consider a pair of nuclear spins I = 1/2 and S = 1/2 placed in a static magnetic field
B0, and suppose for a moment that the system is initially in a pure state |ψ0〉 = |00〉. The
procedure of SDC, whose quantum circuit is described in figure 1, is as follows [7]. Firstly,
the entangling operation Uent is performed, i.e., a Hadamard gate on the I spin (HI ⊗ IS) is
followed by a controlled-NOT gate (Ucn) whose control and target qubits are the I and S spins,
respectively. The quantum state |ψ1〉 after the entangling operation Uent = Ucn(HI ⊗ IS) is
represented as

|ψ1〉 = Uent|ψ0〉 = 1√
2
(|00〉 + |11〉) ≡ |β00〉. (2.1)

Here, |β00〉 is known as one of the four Bell states [12]

|βzx〉 ≡ |0, x〉 + (−1)z|1, x̄〉√
2

, (2.2)

where z, x = 0, 1 and x̄ = 1 − x. Secondly, the S spin is given to, say, Alice, and the I spin
to, say, Bob. Bob then encodes a two-bit classical message zx on the I spin by applying a
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Figure 1. A quantum circuit for superdense coding for a system of nuclear spins I and S. The
states |ψi〉 and ρi (i = 0, 1, 2, 3) correspond to that described in the text for the cases of a pure
initial state and a mixed initial state, respectively. The final measurement is performed on the state
|ψ3〉 or ρ3 using observables ZI and ZS corresponding to the nuclear spin magnetizations.

unitary operation Uzx = ZzXx , and then sends off the encoded qubit to Alice. The effect of
the unitary transformation Uzx is to toggle |ψ1〉 = |β00〉 into another Bell state. That is,

|ψ2〉 = Uzx |β00〉 = |βzx〉. (2.3)

Then, Alice applies the disentangling operation Udisent = (HI ⊗ IS)Ucn, which is the inverse
operation of Uent. Now the state |ψ3〉 becomes

|ψ3〉 = Udisent|ψ2〉 = |zx〉. (2.4)

Finally, Alice performs measurement of the resultant magnetizations ZI and ZS and extracts
the results as (−1)z and (−1)x , from which Alice can tell the message zx encoded in the I
spin by Bob.

In this ideal case of the pure initial state, the two classical bits of message zx would
successfully be transferred via the I spin alone. Hence, communication by SDC is efficient by
a factor of 2 as compared to the classical communication. Such non-classical efficiency gain
is ascribed to the existence of entanglement in the Bell state.

3. NMR SDC for a mixed state

In actual NMR experiments carried out in a static magnetic field B0 (typically ∼10 tesla), a
system of nuclear spins is in a mixed state. In most cases, the Zeeman interaction

H = −
m−1∑
i=0

h̄γiB0

2
Zi (3.1)

is overwhelmingly dominant over other nuclear spin interactions. Here, γi and Zi are the
gyromagnetic ratio and the z component of the Pauli operators of the ith spin, respectively. In
thermal equilibrium at temperature T, nuclear spin polarization εi is given by

εi = tanh

(−γih̄B0

2kBT

)
, (3.2)

from which probabilities pi and qi of finding the ith spin in the states |0〉 and |1〉, respectively,
are obtained as

pi = 1 + εi

2
, qi = 1 − εi

2
. (3.3)

In an ensemble of an m-qubit system, a density matrix representing a thermal equilibrium state
is given by

ρm-qubit = ρ1 ⊗ · · · ⊗ ρm = ⊗m
i=1ρ

i, (3.4)

where ρi is the density matrix for the ith nuclear spin and is written as

ρi = pi |0〉〈0| + qi |1〉〈1|. (3.5)
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Except at very low temperatures, the energy splitting h̄γiB0 between the states |0〉 and |1〉 is
much smaller than the thermal energy kBT , and as a consequence, the nuclear spin polarization
is very low and the system is in a highly mixed state. Accordingly, information processing
should be evaluated statistically.

For an ensemble system of isolated pairs of nuclear spins I = 1/2 and S = 1/2, the initial
state is described by a density matrix ρ0 represented as

ρ0 = (pI |0〉〈0| + qI |1〉〈1|) ⊗ (pS |0〉〈0| + qS |1〉〈1|)
= pIpS |00〉〈00| + pIqS |01〉〈01| + qIpS |10〉〈10| + qIqS |11〉〈11|. (3.6)

The state ρ1 after performing the entangling operation Uent is a general Bell diagonal state of
the form

ρ1 = Uentρ0U
†
ent

= pIpS |β00〉〈β00| + pIqS |β01〉〈β01|
+ qIpS |β10〉〈β10| + qIqS |β11〉〈β11|. (3.7)

Then, when Bob encodes the message zx by applying the unitary operation Uzx , the state ρ1

is toggled into another Bell diagonal state ρ2 given by

ρ2 = Uzxρ1U
†
zx

= pIpS |βz,x〉〈βz,x | + pIqS |βz,x̄〉〈βz,x̄ |
+ qIpS |βz̄,x〉〈βz̄,x | + qI qS |βz̄,x̄〉〈βz̄,x̄ |, (3.8)

and the state ρ3 after the disentangling operation by Alice is obtained as

ρ3 = Udisentρ2U
†
disent

= pIpS |z, x〉〈z, x| + pIqS |z, x̄〉〈z, x̄|
+ qIpS |z̄, x〉〈z̄, x| + qIqS |z̄, x̄〉〈z̄, x̄|

= (pI |z〉〈z| + qI |z̄〉〈z̄|) ⊗ (pS |x〉〈x| + qS |x̄〉〈x̄|). (3.9)

The final measurement of the spin magnetizations is done on the ensemble system composed
of n molecules. That is, the net magnetizations

∑n
i=1 Z

(i)
I and

∑n
i=1 Z

(i)
S are measured

on the product state ⊗n
i=0ρ

(i)
3 , where ρ

(i)
3 stands for the density matrix ρ3 of the ith

molecule. The result of the measurement gives binomial probability distribution over
(−n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n) with the mean values µI and µS to be

µI = (−1)znpI + (−1)z̄nqI = (−1)znεI , µS = (−1)xnpS + (−1)x̄nqS = (−1)xnεS.

(3.10)

Since we are now dealing with a statistical issue in an ensemble system, it is necessary
to evaluate the distribution width and error probability. To be specific, we assume here that
z = x = 0. The following discussion can straightforwardly be extended to other choices on
zx. The corresponding variances are given by

σ 2
ξ = 4npξqξ = n

(
1 − ε2

ξ

)
, (3.11)

for ξ = I, S. Thereby, the relative distribution widths are characterized by

σξ

µξ

=
√

n
(
1 − ε2

ξ

)
nεξ

≈ 1

εξ

√
n
. (3.12)

Since the relative widths given in (3.12) decrease as
√

n, the greater the number of molecules,
the closer the measurement is expected to give results to the mean values (3.10).
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Now we evaluate the possibility of obtaining a negative value in the measurement of Z
(i)
I

even if the mean value µI = (−1)z=0nεI is positive. This error probability Pe is formulated
as

P e = P

(
n∑

i=1

Z
(i)
I < 0

∣∣∣∣∣z = 0

)
. (3.13)

In order to show that P e is negligible for a range of n in most current NMR experiments, we
use the DeMoivre and Laplace theorems [13]

P

{
α <

∑n
i Z

(i)
I − µI

σI

< β

}
≈ 1√

2π

∫ β

α

e− x2

2 dx, (3.14)

from which we have for n � 1

P e = P

{
−∞ <

∑n
i Z

(i)
I − µI

σI

< −µI

σI

}

≈ 1√
2π

∫ −µI /σI

−∞
e− x2

2 dx

≈ 1√
2π

e− (nε2
I
)

2
1

(
√

nεI )
. (3.15)

In an ensemble system with a large number of molecules, the results of the measurement on the
spin magnetizations ZI and ZS are very close to the mean values (3.10) with negligible error
probabilities (3.15). In a typical NMR experiment, the number n of molecules is as large as
∼1018, and spin polarization ε is as small as ε ∼ 10−5. Then we calculate P e to be 
10−100,
which is virtually negligible. Therefore, we summarize the results of the measurement of the
spin magnetizations ZI and ZS to be as follows:

〈ZI 〉 = (−1)zεI 〈ZS〉 = (−1)xεS. (3.16)

In fact, actual NMR experiments do require a very large number of molecules due to the
low sensitivity. The NMR signal intensity VS is formally given by

VS = 1
4

√
(Q/V )µ0RωIh̄γInεI , (3.17)

where ωI = h̄γI is the resonance frequency, V is the volume of the detection coil and Q and
R are the quality factor and the resistance of the resonant circuit, respectively. On the other
hand, the noise amplitude VN is determined by the Nyquist formula [14]

VN =
√

4kBT R�ν, (3.18)

where �ν is the amplifier bandwidth. Thus, in order to detect NMR signals with appreciable
signal-to-noise ratio for moderate values V ∼ 1 cm3 and Q ∼ 102, the number n of molecules
is required to be larger than ∼1016. This lower bound for n happens to result in indiscernible
statistical distribution and error probability. It follows that the two-bit message can be
transferred, regardless of polarization and therefore separability of the density matrix. We
emphasize that this does not necessarily mean that the NMR experiment described here is a
real demonstration of SDC with the mixed states, because the successful transfer can merely
be due to the statistical effect in an ensemble system having a very large number of molecules.
The two-bit message carried by ∼1018 molecules (resources) cannot be counted as any gain
in the first place.
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4. Detection of entanglement

From the density matrix ρ2 in (3.8), we obtain a probability for successful SDC to be pIpS ,
with which a two-bit message can be transferred through a single qubit. On the other hand, in
classical communication, a single-bit channel can carry at most one bit of information even if
the message is a two-bit message. Then, the best the receiver can do is just to bet on the other
bit, which will turn out to be correct with a probability of 1/2. Therefore, the efficiency gain
in SDC over the classical communication is attained provided that

pIpS > 1/2 (4.1)

is satisfied. It is worth noting here that this condition exactly coincides with the condition
for the non-separability of ρ2 derived from, e.g., the negativity criterion [15, 16]. Hence, the
NMR experiments and the mathematical argument are satisfactorily consistent to each other,
and the apparent confusion between them has indeed been resolved.

To put it another way, when a quantity F defined by

F ≡ 1/2 − pIpS (4.2)

has a negative value, the NMR SDC accompanies entanglement and exhibits non-classical
nature. Detection of entanglement through finding a negative value for an observable is
reminiscent of the entanglement witness [10, 11]. The entanglement witness is a Hermitian
operator W = W † which has positive mean values for all separable states ρ, Tr(Wρ) > 0, but
a negative mean value for at least one entangled state σent, Tr(Wσent) < 0. We rewrite F as

F = 1
2 − 1

4 (1 + εI )(1 + εS)

= 1
2 − 1

4 (1 + |〈ZI 〉|)(1 + |〈ZS〉|), (4.3)

where we have used (3.16). The absolute values are required for the evaluation of the function
F for different choices of zx.

The measurement on the state ρ3 with the observables ZI and ZS is equivalent to the
measurement on the state ρ2 (or ρ1 in the special case of z = x = 0) in the Bell basis because

〈ZI 〉 = Tr ρ3(ZI ⊗ IS)

= Tr ρ2(XI ⊗ XS) = 〈W1〉 (4.4)

〈ZS〉 = Tr ρ3(II ⊗ ZS)

= Tr ρ2(ZI ⊗ ZS) = 〈W2〉, (4.5)

where the two observables W1 and W2 are defined as

W1 ≡ U
†
disent(ZI ⊗ IS)Udisent = XI ⊗ XS, (4.6)

W2 ≡ U
†
disent(II ⊗ ZS)Udisent = ZI ⊗ ZS. (4.7)

From (4.3), (4.4) and (4.5), F is further rewritten as

F ≡ f (〈W1〉, 〈W2〉) ≡ 1
2 − 1

4 (1 + |〈W1〉|)(1 + |〈W2〉|). (4.8)

Since magnetizations carry information as to spin polarization, separate and simultaneous
measurement of the observables W1 and W2 tells us the existence of entanglement. That is, if
〈W1〉 and 〈W2〉 satisfy

F ≡ f (〈W1〉, 〈W2〉) < 0, (4.9)
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then the state is entangled. In the sense that a set of W1 and W2 gives information on the
existence of entanglement through negativity of F (4.8), W1 and W2 can be regarded as a new
class of entanglement witnesses. Furthermore, the measurement of magnetizations is quite
straightforward in actual NMR experiments [1].

We note that entanglement can also be detected in principle by measuring the conventional
entanglement witness [10, 11]. For ρ2, the entanglement witness derived through the
conventional approach [10, 11] is

W = 1
4 (II ⊗ IS + (−1)z̄XI ⊗ XS + (−1)z̄(−1)x̄YI ⊗ YS + (−1)x̄ZI ⊗ ZS). (4.10)

In the appendix, we show that this conventional entanglement witness can also be measured
in a single run-through measurement of the spin magnetizations, if we assume the ability of
implementing any form of unitary transformations. Nevertheless, the new scheme introduced
in this work still has an advantage that there is no need to change the experimental operations
for different choices of zx. On the other hand, the conventional entanglement witness requires
a somewhat complicated pre-applied unitary transformation, which moreover depends on the
choices of z and x.

5. Conclusion

NMR with very low nuclear spin polarizations prohibits the existence of entanglement.
Although two-bit information is correctly detected in a NMR SDC experiment irrespective of
polarization, it can be merely due to a statistical effect in an ensemble system having a large
number of molecules. For a completely reliable demonstration of NMR SDC, spin polarization
should inevitably be enhanced over a certain threshold, which has been shown to coincide with
the condition for non-separability of the states. Taking advantage of these results, we have
introduced a new class of entanglement witnesses suitable particularly for NMR experiments,
which is straightforwardly measurable in a single run experiment and is generally applicable
to every Bell diagonal state. Despite that detection of entanglement through the conventional
entanglement witness is also possible in a single NMR experiment, it requires pre-application
of a complicated unitary transformation that depends on the choice of the two-bit message.
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Appendix. Single run detection of the conventional entanglement witness

Here we show that the conventional entanglement witness is measurable in a single NMR
experiment by applying an appropriate unitary transformation that depends on the choices of z

and x prior to the measurement of the spin magnetizations. Suppose that we have an observable
W̃ = U †W̃ oU = U †(aZI ⊗ IS + bII ⊗ ZS + cII ⊗ IS)U with coefficients a, b, c ∈ R and a
unitary transformation U ∈ U(4). The problem here is to find a set of a, b, c and U such that

Tr ρ2W̃ = Tr ρ2W (A.1)

for each of the four possible messages zx, where W is the conventional entanglement witness
given in (4.10).
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Here we deal with the case of z = x = 0, in which the entanglement witness W is

W = 1
4 (II ⊗ IS − XI ⊗ XS + YI ⊗ YS − ZI ⊗ ZS). (A.2)

We require (A.1) to hold for any pI and pS . By considering the case pI = pS = 1/2 (the
maximally mixed state), we immediately obtain c = 1/4 from

Tr ρ2W = 1
4 , Tr ρ2W̃ = Tr Uρ2U

†W̃o = c. (A.3)

Now we re-formulate problem (A.1) using ρ2 = ρ1 (z = x = 0) and ρ1 = Uentρ0U
†
ent

into

Tr ρ1(W
′ − V †W̃ oV ) = 0, (A.4)

where V = UUent and W ′ = U
†
entWUent. Since ρ0 is a diagonal matrix, the diagonal elements

of W ′ − V †W̃ oV ought to be zero, and have the following form:

W ′ − V †W̃ oV =




0 a01 a02 a03

a∗
01 0 a12 a13

a∗
02 a∗

12 0 a23

a∗
03 a∗

13 a∗
23 0


 . (A.5)

Using W ′ = diag
(− 1

2 , 1
2 , 1

2 , 1
2

)
and W̃ o = diag(a + b, a − b,−a + b,−a − b) + 1

4 (II ⊗ IS),
we obtain 


− 3

4 −a01 −a02 −a03

−a∗
01

1
4 −a12 −a13

−a∗
02 −a∗

12
1
4 −a23

−a∗
03 −a∗

13 −a∗
23

1
4


 = V †




α 0 0 0
0 β 0 0
0 0 −β 0
0 0 0 −α


 V, (A.6)

where α = a + b and β = a − b. This leads to

α|V0i |2 + β|V1i |2 − β|V2i |2 − α|V3i |2 = hi, (A.7)

where h0 = −3/4, and h1 = h2 = h3 = 1/4. The unitarity of V also requires

|V0i |2 + |V1i |2 + |V2i |2 + |V3i |2 = 1. (A.8)

An example of the set that satisfies (A.7) and (A.8) suffices for the proof. We put, e.g.,
α = 3/4 and β = 0 and get

V = 1√
3




0 1 eiπ2/3 e−iπ2/3

0 1 e−iπ2/3 eiπ2/3

0 1 1 1√
3 0 0 0


 . (A.9)

It is also possible to prove in a quite similar manner that there exists a set of a, b, c and
U that satisfies (A.1) for any other choice than z = x = 0. For general zx, only hi in (A.7) is
needed to be modified as hx+2z = 3/4 and other =1/4. We note, however, that different sets of
a, b, c and U are required for different choices of z and x, in contrast to the new entanglement
witness proposed in the present work, which covers every possible message zx. For instance,
from (A.7) we obtain for z = x = 0 and i = 0

α|V00|2 + β|V10|2 − β|V20|2 − α|V30|2 = − 3
4 , (A.10)

which is satisfied by the set given in (A.9). However, this set of α and β cannot fulfil the
requirement for, e.g., x �= z = 1 and i = 0 that

α|V00|2 + β|V10|2 − β|V20|2 − α|V30|2 = 1
4 . (A.11)
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